Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Eur J Radiol ; 163: 110809, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2300326

ABSTRACT

PURPOSE: To evaluate myocardial status through the assessment of extracellular volume (ECV) calculated at computed tomography (CT) in patients hospitalized for novel coronavirus disease (COVID-19), with regards to the presence of pulmonary embolism (PE) as a risk factor for cardiac dysfunction. METHOD: Hospitalized patients with COVID-19 who underwent contrast-enhanced CT at our institution were retrospectively included in this study and grouped with regards to the presence of PE. Unenhanced and portal venous phase scans were used to calculate ECV by placing regions of interest in the myocardial septum and left ventricular blood pool. ECV values were compared between patients with and without PE, and correlations between ECV values and clinical or technical variables were subsequently appraised. RESULTS: Ninety-four patients were included, 63/94 of whom males (67%), with a median age of 70 (IQR 56-76 years); 28/94 (30%) patients presented with PE. Patients with PE had a higher myocardial ECV than those without (33.5%, IQR 29.4-37.5% versus 29.8%, IQR 25.1-34.0%; p = 0.010). There were no correlations between ECV and patients' age (p = 0.870) or sex (p = 0.122), unenhanced scan voltage (p = 0.822), portal phase scan voltage (p = 0.631), overall radiation dose (p = 0.569), portal phase scan timing (p = 0.460), and contrast agent dose (p = 0.563). CONCLUSIONS: CT-derived ECV could help identify COVID-19 patients at higher risk of cardiac dysfunction, especially when related to PE, to potentially plan a dedicated, patient-tailored clinical approach.


Subject(s)
COVID-19 , Heart Diseases , Pulmonary Embolism , Male , Humans , Middle Aged , Aged , Retrospective Studies , Myocardium , Tomography, X-Ray Computed/methods , Pulmonary Embolism/diagnostic imaging
2.
J Am Heart Assoc ; 12(6): e027801, 2023 03 21.
Article in English | MEDLINE | ID: covidwho-2264637

ABSTRACT

Background Meta-analysis can identify biological factors that moderate cardiac magnetic resonance myocardial tissue markers such as native T1 (longitudinal magnetization relaxation time constant) and T2 (transverse magnetization relaxation time constant) in cohorts recovering from COVID-19 infection. Methods and Results Cardiac magnetic resonance studies of patients with COVID-19 using myocardial T1, T2 mapping, extracellular volume, and late gadolinium enhancement were identified by database searches. Pooled effect sizes and interstudy heterogeneity (I2) were estimated with random effects models. Moderators of interstudy heterogeneity were analyzed by meta-regression of the percent difference of native T1 and T2 between COVID-19 and control groups (%ΔT1 [percent difference of the study-level means of myocardial T1 in patients with COVID-19 and controls] and %ΔT2 [percent difference of the study-level means of myocardial T2 in patients with COVID-19 and controls]), extracellular volume, and the proportion of late gadolinium enhancement. Interstudy heterogeneities of %ΔT1 (I2=76%) and %ΔT2 (I2=88%) were significantly lower than for native T1 and T2, respectively, independent of field strength, with pooled effect sizes of %ΔT1=1.24% (95% CI, 0.54%-1.9%) and %ΔT2=3.77% (95% CI, 1.79%-5.79%). %ΔT1 was lower for studies in children (median age: 12.7 years) and athletes (median age: 21 years), compared with older adults (median age: 48 years). Duration of recovery from COVID-19, cardiac troponins, C-reactive protein, and age were significant moderators for %ΔT1 and/or %ΔT2. Extracellular volume, adjusted by age, was moderated by recovery duration. Age, diabetes, and hypertension were significant moderators of the proportion of late gadolinium enhancement in adults. Conclusions T1 and T2 are dynamic markers of cardiac involvement in COVID-19 that reflect the regression of cardiomyocyte injury and myocardial inflammation during recovery. Late gadolinium enhancement and to a lesser extent extracellular volume, are more static biomarkers moderated by preexisting risk factors linked to adverse myocardial tissue remodeling.


Subject(s)
COVID-19 , Contrast Media , Child , Humans , Aged , Young Adult , Adult , Middle Aged , Gadolinium , Magnetic Resonance Imaging, Cine/methods , Myocardium/pathology , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Predictive Value of Tests
3.
Int J Cardiol Heart Vasc ; 36: 100854, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1336528

ABSTRACT

BACKGROUND: Post-COVID-19 patients may incur myocardial involvement secondary to systemic inflammation. Our aim was to detect possible oedema/diffuse fibrosis using cardiac magnetic resonance imaging (CMR) mapping and to study myocardial deformation of the left ventricle (LV) using feature tracking (FT). METHODS: Prospective analysis of consecutively recruited post-COVID-19 patients undergoing CMR. T1 and T2 mapping sequences were acquired and FT analysis was performed using 2D steady-state free precession cine sequences. Statistical significance was set to p < 0.05. RESULTS: Included were 57 post-COVID-19 patients and 20 healthy controls, mean age 59 ± 15 years, men 80.7%. The most frequent risk factors were hypertension (33.3%) and dyslipidaemia (36.8%). The contact-to-CMR interval was 81 ± 27 days. LV ejection fraction (LVEF) was 61 ± 10%. Late gadolinium enhancement (LGE) was evident in 26.3% of patients (19.3%, non-ischaemic). T2 mapping values (suggestive of oedema) were higher in the study patients than in the controls (50.9 ± 4.3 ms vs 48 ± 1.9 ms, p < 0.01). No between-group differences were observed for native T1 nor for circumferential strain (CS) or radial strain (RS) values (18.6 ± 3.3% vs 19.2 ± 2.1% (p = 0.52) and 32.3 ± 8.1% vs 33.6 ± 7.1% (p = 0.9), respectively). A sub-group analysis for the contact-to-CMR interval (<8 weeks vs ≥ 8 weeks) showed that FT-CS (15.6 ± 2.2% vs 18.9 ± 2.6%, p < 0.01) and FT-RS (24.9 ± 5.8 vs 33.5 ± 7.2%, p < 0.01) values were lower for the shorter interval. CONCLUSIONS: Post-COVID-19 patients compared to heathy controls had raised T2 values (related to oedema), but similar native T1, FT-CS and FT-RS values. FT-CS and FT-RS values were lower in post-COVID-19 patients undergoing CMR after < 8 weeks compared to ≥ 8 weeks.

4.
Am Heart J Plus ; 5: 100025, 2021 May.
Article in English | MEDLINE | ID: covidwho-1286239

ABSTRACT

Post-Acute COVID-19 Syndrome (PACS) is defined by persistent symptoms >3-4 weeks after onset of COVID-19. The mechanism of these persistent symptoms is distinct from acute COVID-19 although not completely understood despite the high incidence of PACS. Cardiovascular symptoms such as chest pain and palpitations commonly occur in PACS, but the underlying cause of symptoms is infrequently known. While autopsy studies have shown that the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) rarely causes direct myocardial injury, several syndromes such as myocarditis, pericarditis, and Postural Orthostatic Tachycardia Syndrome have been implicated in PACS. Additionally, patients hospitalized with acute COVID-19 who display biomarker evidence of myocardial injury may have underlying coronary artery disease revealed by the physiological stress of SARS-CoV-2 infection and may benefit from medical optimization. We review what is known about PACS and the cardiovascular system and propose a framework for evaluation and management of related symptoms.

5.
JACC Cardiovasc Imaging ; 13(11): 2330-2339, 2020 11.
Article in English | MEDLINE | ID: covidwho-701945

ABSTRACT

Objectives: This study evaluated cardiac involvement in patients recovered from coronavirus disease-2019 (COVID-19) using cardiac magnetic resonance (CMR). Background: Myocardial injury caused by COVID-19 was previously reported in hospitalized patients. It is unknown if there is sustained cardiac involvement after patients' recovery from COVID-19. Methods: Twenty-six patients recovered from COVID-19 who reported cardiac symptoms and underwent CMR examinations were retrospectively included. CMR protocols consisted of conventional sequences (cine, T2-weighted imaging, and late gadolinium enhancement [LGE]) and quantitative mapping sequences (T1, T2, and extracellular volume [ECV] mapping). Edema ratio and LGE were assessed in post-COVID-19 patients. Cardiac function, native T1/T2, and ECV were quantitatively evaluated and compared with controls. Results: Fifteen patients (58%) had abnormal CMR findings on conventional CMR sequences: myocardial edema was found in 14 (54%) patients and LGE was found in 8 (31%) patients. Decreased right ventricle functional parameters including ejection fraction, cardiac index, and stroke volume/body surface area were found in patients with positive conventional CMR findings. Using quantitative mapping, global native T1, T2, and ECV were all found to be significantly elevated in patients with positive conventional CMR findings, compared with patients without positive findings and controls (median [interquartile range]: native T1 1,271 ms [1,243 to 1,298 ms] vs. 1,237 ms [1,216 to 1,262 ms] vs. 1,224 ms [1,217 to 1,245 ms]; mean ± SD: T2 42.7 ± 3.1 ms vs. 38.1 ms ± 2.4 vs. 39.1 ms ± 3.1; median [interquartile range]: 28.2% [24.8% to 36.2%] vs. 24.8% [23.1% to 25.4%] vs. 23.7% [22.2% to 25.2%]; p = 0.002; p < 0.001, and p = 0.002, respectively). Conclusions: Cardiac involvement was found in a proportion of patients recovered from COVID-19. CMR manifestation included myocardial edema, fibrosis, and impaired right ventricle function. Attention should be paid to the possible myocardial involvement in patients recovered from COVID-19 with cardiac symptoms.


Subject(s)
Coronavirus Infections/therapy , Edema, Cardiac/diagnostic imaging , Magnetic Resonance Imaging, Cine , Pneumonia, Viral/therapy , Ventricular Dysfunction, Right/diagnostic imaging , Adult , COVID-19 , China , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Edema, Cardiac/etiology , Edema, Cardiac/pathology , Female , Fibrosis , Humans , Male , Middle Aged , Myocardium/pathology , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Predictive Value of Tests , Remission Induction , Retrospective Studies , Ventricular Dysfunction, Right/etiology , Ventricular Dysfunction, Right/physiopathology , Ventricular Function, Right
SELECTION OF CITATIONS
SEARCH DETAIL